Monitoring Cortical Excitability during Repetitive Transcranial Magnetic Stimulation in Children with ADHD: A Single-Blind, Sham-Controlled TMS-EEG Study

نویسندگان

  • Christian Helfrich
  • Simone S. Pierau
  • Christine M. Freitag
  • Jochen Roeper
  • Ulf Ziemann
  • Stephan Bender
چکیده

BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children. OBJECTIVE TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available. METHODS In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition. RESULTS TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation. CONCLUSION The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repetitive transcranial magnetic stimulation in delirium: A double-blind, randomized, sham-controlled, pilot study

Purpose: Delirium is a fatal but potentially reversible disorder of Central Nervous System that adds a lot of costs on health systems. The aim of this study was to evaluate the effect of intermittent theta burst stimulation on severity and course of delirium. Methods: This was a double-blind, randomized, sham-controlled, pilot study. The participants were randomly allocated into two groups of ...

متن کامل

Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study.

The effects of repetitive transcranial magnetic stimulation (rTMS) on cortical excitability are usually inferred from indirect indexes, such as EMG responses. It has now become possible to directly evaluate rTMS impact by means of concurrent EEG recording. The aim of this study was to examine the modulation induced by high frequency rTMS (20 Hz) over left primary motor cortex on the ongoing osc...

متن کامل

Role of Repetitive transcranial magnetic stimulation on drug use craving and addictive behaviors: Review Study

Introduction & Objective: Repetitive transcranial magnetic stimulation (rTMS) is an electro physiologic brain stimulation and integration technique that can change the cortical excitability of the target area in the brain and modulate the nervous and muscular ductility. Addiction is associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) and altered cerebral oscillations. Acco...

متن کامل

Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation.

It is generally accepted that low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) induces changes in cortical excitability, but there is only indirect evidence of its effects despite a large number of studies employing different stimulation parameters. Typically the cortical modulations are inferred through indirect measurements, such as recording the change in electromy...

متن کامل

Potentiation of short - latency cortical responses by high - frequency repetitive transcranial 1 magnetic stimulation 2 3 4 5

24 It is generally accepted that lowand high-frequency repetitive Transcranial Magnetic Stimulation 25 (rTMS) induces changes in cortical excitability, but there is only indirect evidence of its effects, 26 despite a large number of studies employing different stimulation parameters. Typically, the cortical 27 modulations are inferred through indirect measurements, such as recording the change ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012